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Abstract

Introduction: Alzheimer’s disease (AD) is heterogeneous, both clinically and neu-

ropathologically.We investigatedwhether polygenic risk scores (PRSs) integratedwith

transcriptome profiles fromAD brains can explain AD clinical heterogeneity.

Methods: We conducted co-expression network analysis and identified gene sets

(modules) thatwerepreserved in threeADtranscriptomedatasets and associatedwith

AD-related neuropathological traits including neuritic plaques (NPs) and neurofibril-

lary tangles (NFTs). We computed the module-based PRSs (mbPRSs) for each module
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and tested associations with mbPRSs for cognitive test scores, cognitively defined AD

subgroups, and brain imaging data.

Results: Of the modules significantly associated with NPs and/or NFTs, the mbPRSs

from two modules (M6 and M9) showed distinct associations with language and visu-

ospatial functioning, respectively. Theymatched clinical subtypes and brain atrophy at

specific regions.

Discussion:Our findings demonstrate that polygenic profiling based on co-expressed

gene sets can explain heterogeneity in AD patients, enabling genetically informed

patient stratification and precisionmedicine in AD.

KEYWORDS

Alzheimer’s disease, co-expression network, cognitive performance, genetic subtyping, module-
based polygenic risk score, patient stratification, precisionmedicine

HIGHLIGHTS

∙ Co-expression gene-network analysis in Alzheimer’s disease (AD) brains identified

gene sets (modules) associated with AD heterogeneity.

∙ AD-associatedmoduleswere selectedwhengenes in eachmodulewere enriched for

neuritic plaques and neurofibrillary tangles.

∙ Polygenic risk scores from two selected modules were linked to the matching

cognitively defined AD subgroups (language and visuospatial subgroups).

∙ Polygenic risk scores from the two modules were associated with cognitive perfor-

mance in language and visuospatial domains and the associations were confirmed in

regional-specific brain atrophy data.

1 BACKGROUND

Late onset Alzheimer’s disease (AD) is a complex disorder with clinical

and neuropathological heterogeneity.1,2 Types of clinical heterogene-

ity include progression rate, predominant cognitive symptoms, and

whether psychotic symptoms manifest.1 AD neuropathology can also

be varied with complications of other neuropathological traits beyond

plaques and tangles.1,2 Clinical and neuropathological heterogeneity

may have contributed to the repeated failure of AD clinical trials.3

Classification of heterogeneous AD patients into biologically relevant

subgroups may improve our understanding of biological mechanisms

underlying the variability of cognitive symptoms and trajectories of

decline, as well as lead to development of subgroup-specific treatment

options.4

Different AD subtypes have been previously proposed based on

neuropsychological and neuropathological characteristics,5-7 domain-

specific cognitive functions, magnetic resonance imaging (MRI) brain

imaging data,4 and metabolic profiling.8 However, our understand-

ing of molecular mechanisms underlying disease heterogeneity is still

limited. A recent report illustrates that genetic variants with large

effect sizes can distinguish six cognitively defined subgroups of AD

compared to elderly controls.9 A previous study showed that poly-

genic risk scores (PRSs) derived from clusters (i.e., gene sets) in

genome-wide association studies (GWASs) of type 2 diabetes (T2D)–

related phenotypes have successfully classified T2D patients into

different subtypes.10 These studies demonstrate that PRSs from bio-

logically connected gene sets may explain disease heterogeneity and

improve scientific understanding of biological mechanisms underly-

ing disease subtypes. In addition, co-expression network analyses

have been shown to be useful for identifying biologically connected

and disease-relevant gene sets using transcriptome data.11,12 Taken

together, these findings led to the hypothesis that network analysis

using transcriptome data of AD brains could capture biologically rel-

evant gene sets responsible for distinct disease subtypes and PRSs

derived from the gene sets could explain clinical heterogeneity of

AD.

In this study, we identified modules (sets of biologically relevant

genes) by co-expression analysis and thereby generatedmodule-based

PRSs of AD patients. Then, using domain-specific cognitive functions,

previously defined AD cognitive subtypes, and brain imaging data,

we evaluated whether the module-based PRSs can explain cognitive

impairment heterogeneity among the AD patients.
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2 METHODS

2.1 Sources of RNA sequencing data in autopsied
AD brains for network analysis

Co-expression network analysis was performed using previously

generated gene expression data from the dorsolateral prefrontal

cortex (DLPFC) area of 65 autopsy-confirmed non-Hispanic White

AD cases from the Framingham Heart Study and Boston Uni-

versity Alzheimer’s Disease Research Center (FHS/BUADRC).13

Details of procedures for quality control (QC) of RNA sequenc-

ing (RNA-Seq) data and neuropathological AD diagnosis are

presented in supporting information and previously reported

elsewhere.13 Additional RNA-Seq datasets for validation were

obtained from the CommonMind portal (http://www.synapse.org)

including post-QC normalized gene expression data (version #1)

from the DLPFC area of 363 neuropathologically confirmed AD

cases in the Religious Orders Study and Rush Memory and Aging

Project (ROSMAP)14 and from the temporal cortex area of 82

autopsy-confirmed AD cases in the Mayo Clinic Study of Aging

(MAYO).15.

2.2 Identifying preserved and AD-associated
modules

Co-expression gene sets (i.e., modules) were generated using the tran-

scriptome data from the 65 AD brains in FHS/BUADRC using the

weighted gene co-expression network analysis (WGCNA) approach,

which computes pairwise correlations for all gene pairs and clus-

ters genes by the correlated expression levels.16 Transcriptome data

of AD-free controls were not included in our co-expression study

because our interest is to identify gene sets related to the disease

heterogeneity, not the disease risk (e.g., AD cases versus controls).

Details of co-expression module construction are presented in sup-

porting information and previously described.17 Preservation of the

discovery modules was evaluated in the two independent validation

datasets, including ROSMAP and MAYO datasets, using z summary

statistics.16 We considered a module to be preserved if z summary

scores were > 5.0 in both validation datasets.16 Among the preserved

modules, we selected AD-associated modules by enrichment analy-

ses using gene sets for AD-related neuropathological traits18 including

neuritic plaques (NP) and neurofibrillary tangles (NFT), as well as AD

risk.19WeusedAD-associatedgenes for enrichment analyses that con-

tained at least one single nucleotide polymorphism (SNP)withP<10−3

located within ±20 kb from the gene associated with one of the AD

phenotypes (NP, NFT, or AD risk). We selected significant enrichment

P-values < 0.05 using Fisher’s exact test after false discovery rate

(FDR) correction. Based on the result from the enrichment analysis for

each module, we assigned the AD phenotypes (NP, NFT, or AD risk) for

which the module was most significantly enriched and used it to cal-

culate module-based PRSs. The selected AD-associated modules were

considered to generatemodule-based PRSs.

RESEARCH INCONTEXT

1. Systematic Review: We reviewed the literature using

traditional (e.g., PubMed) as well as preprinted (e.g.,

medRxiv) sources on studies about Alzheimer’s disease

(AD) heterogeneity using genetic information.

2. Interpretation: Our co-expression network analysis

among only AD brains without controls identified gene

sets (modules) that are likely to be responsible for AD

heterogeneity. The polygenic risk scores derived from

the modules associated with cognitive performance for

certain domains (language and visuospatial functioning)

were also associated with cognitively defined AD sub-

groups for the matching domains and cortical thickness

at the specific brain regions. These findings imply that

genetics can be a useful source for dissecting the disease

heterogeneity along with other resources including

domain-specific cognitive measures, brain imaging scans,

and neuropathological traits.

3. Future Directions: Follow-up analysis will repeat the

analysis in large independent samples to validate our

approach and findings.

We also examined expression coherence and cellular signatures

of genes in each of the AD-associated modules using single cell

RNA-seq data in five different cell types (astrocytes, microglia, oligo-

dendrocytes, endothelia, and neurons) from the temporal lobe area

(Gene Expression Omnibus ID: GSE67835)20 and single nucleus RNA-

seq data in seven cell types (astrocytes, microglia, oligodendrocytes,

pericytes, endothelia, and excitatory/inhibitory neurons) from the pre-

frontal cortex in the ROSMAP.21 Details of methods for deriving cell-

type–specific gene sets and their expression profiling are presented

in supporting information and reported elsewhere.13 Enrichment of

cell-type specificity for each AD-associated module was tested using

Fisher’s exact test.

2.3 Genotypic and phenotypic data in ADNI

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longitu-

dinal study assessing clinical, neuroimaging, genetic, and biomarker

data from participants in various stages of cognitive impairment

including cognitively normal (CN), mild cognitive impairment (MCI),

and AD. Genetic and phenotypic data of ADNI participants were

obtained from the Laboratory of Neuro Imaging (LONI) website

(http://adni.loni.usc.edu). We used the ADNI genetic data for comput-

ing module-based PRSs (mbPRSs) and phenotype data for evaluating

the relationships between mbPRSs and cognitive impairment het-

erogeneity. Genome-wide genotype data from two different arrays

(ADNI-1, n = 679 and ADNI-GO/2, n = 397) were imputed using the
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Haplotype Reference Consortium data. Details of QC, imputation, and

population substructure procedures are described in the supporting

information. Characteristics of the sample after QC are presented in

Table S1 in supporting information.

Because the clinical spectrum of AD can be largely affected by

impairment of specific cognitive functions,22 we hypothesized that

deficits in particular cognitive domains explain, at least in part,

disease heterogeneity (i.e., cognitive impairment heterogeneity). To

explore this heterogeneity, we used domain-specific cognitive tests

at the last exam from the ADNI dataset (Table S1): logical memory

immediate (LIMMTOTAL) and delayed (LDELTOTAL) recall tests for

memory; Trail Making Test Parts A/B (TRAASCOR and TRABSCOR)

for executive functioning; category fluency animal score (CATAN-

IMSC) and Boston Naming Test total (BNTTOTAL) score for language;

and clock test total score (COPYSCORE) for visuospatial function-

ing. Cognitive test scores were adjusted for age at last exam, sex,

and education using linear regression, and the residuals derived

from the regression models were ranked-transformed as previously

described.17

2.4 Computing and assessing PRSs for
AD-associated modules in ADNI

We selected SNPs in each AD-associated module from the enrichment

analysis for the assigned AD outcome and generated mbPRSs using

effect estimates of the selected SNPs for NP, NFT, or AD risk from

the enrichment analysis. For comparison, we also generated PRSs for

NP, NFT, and AD risk in a conventional approach, which aggregates

effect estimates of SNPs with P< 0.001 across the genome, defined as

genome-wide PRS (gwPRS). Details about computing these two types

of PRSs (gwPRS and mbPRS) are included in the supporting informa-

tion. We excluded modules with low mean and standard error and/or

skewed distributions.

After generating those PRSs in ADNI, we evaluated correlations

among the mbPRSs and gwPRSs. To assess relevance of those PRSs

to disease stages/progression, we stratified ADNI subjects by disease

stages (CN, MCI, and AD) at the last exam and compared mean values

of PRSs between different disease stages. We also tested associa-

tions between PRSs and conversion status for AD progression (e.g.,

CN to MCI or AD; MCI to AD) excluding AD at baseline using logistic

regression models after adjusting for age, sex, the first four principal

components (PCs) and the array information.

Next, we conducted association tests with mbPRSs or gwPRSs

for specific cognitive domains using rank-transformed cognitive test

scores as quantitative outcomes in linear regression models after

adjusting the first four PCs and genotype platform as covariates. We

followed up the nominally significant modules (P < 0.05) with domain-

specific cognitive test scores as cognitive impairment heterogeneity

(CIH) modules.

We also attempted to replicate the associations between mbPRSs

of the selected CIH modules and domain-specific cognitive test

scores among 134 AD cases in FHS (dbGaP Study Accession ID:

phs000056.v5.p3). Details of sample characteristics, imputation, com-

putation of mbPRSs, and association tests with cognitive test scores in

Neuropsychological Test Battery in FHS are described in the support-

ing information.

2.5 Validating CIH modules with cognitively
defined AD subtypes in ADNI

Previously, 672 AD cases in ADNI have been classified into cogni-

tively defined subtypes based on relative impairments at the time of

AD diagnosis,9 consisting of 196 as AD-Memory, 16 as AD-Executive

functioning, 52 as AD-Language, 91 as AD-Visuospatial functioning,

and 317 other domains (Table S2 in supporting infomation). Details

about these cognitively defined subtypes are described in support-

ing information and reported elsewhere.9 We evaluated whether

mbPRSs of CIH modules are linked into one of the four cognitively

defined subgroups (AD-Memory, AD-Executive, AD-Language, and

AD-Visuospatial domains). Each subject was assigned into member-

ship of one subgroup coded as 1, and otherwise coded as 0 excluding

subjects with overlapping memberships. We tested the association

between mbPRSs and a dichotomized membership of cognitively

defined subtypes in a logistic regression model adjusting for age, sex,

the first four PCs, and genotype platform as covariates.

2.6 Brain imaging (MRI) data analysis with
mbPRSs of the CIH modules in ADNI

To understand the relationships between our CIH modules and brain

atrophy at specific brain regions, we tested the association between

mbPRSs and surface-based cortical thickness of ADpatients using gen-

eral linear models after adjusting age, sex, magnetic field strength,

and intracranial volume as covariates.23 Detailed information about

brain imaging data processing for surface-based measure of cortical

thickness in ADNI are described elsewhere.23

2.7 Biological functions of genes in the CIH
modules

Gene Ontology (GO) analyses were conducted to discern biological

pathways of AD-associated genes in CIH modules using Ingenuity

Pathway Analysis software (QIAGEN). We also looked up associations

between the CIH module-genes and AD-related neuropathological

traits including Consortium to Establish a Registry for Alzheimer’s Dis-

ease (CERAD) score and Braak stage, and quantitative measures of

proteins including amyloid beta (Aβ)42, phosphorylated tau at 181 (p-

tau181) and 231 (p-tau231), postsynaptic density protein 95 (PSD95),

C4a, C4b, and PPP2CA/B from the prefrontal cortex area of autopsied

brains (FHS/BUADRC).13
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TABLE 1 AD associated preserved networks in AD brains

Module

Z summary Enrichment P-value

ROSMAP MAYO NP NFT ADRISK

M1 40.56 20.71 3.74X10-6 3.26X10-9 0.04

M2 37.45 20.68 3.50X10-8 2.57X10-7 0.002

M3 35.48 18.59 5.38X10-5 8.36X10-7 0.01

M4 32.32 18 3.42X10-2 1.25X10-5 0.07

M5 29.83 15.91 1.46X10-6 2.92X10-4 0.40

M6 26.56 14.46 4.70X10-6 0.09 0.09

M7 25.84 14.23 2.65X10-3 2.47X10-4 0.12

M8 20.52 14.07 0.47 0.02 0.20

M9 20.51 12.71 4.34X10-3 8.89X10-4 0.37

M10 18.25 12.64 0.02 0.16 0.16

M11 17.32 11.81 8.70X10-4 7.48X10-4 0.01

M12 17.06 10.55 1.00 0.05 0.95

M13 15.57 8.59 0.02 0.03 0.81

M14 14.79 7.81 0.06 0.04 0.48

Note: Module is a co-expressed gene network in the discovery from the

Framingham Heart Study and Boston University Alzheimer’s Disease Cen-

ter (FHS/BUADRC) study. Z summary is a network preservation score of a

module between the discovery and two validation datasets, the Religious

Orders StudyandRushMemoryandAgingProject (ROSMAP) and theMayo

Clinic Study of Aging (MAYO).

Enrichment P-values for a module were computed using genes in the

given module containing a SNP with P< 10-3 from Beecham et al. for

neuritic plaque (NP) and neurofibrillary tangles (NFT)18 and from Kunkle

et al. for Alzheimer’s disease (AD) risk.19 Fourteen modules were selected

when a module in the FHS/BUADRC study was preserved with Z sum-

mary > 5 in both validation datasets, ROSMAP and MAYO, and significant

at P-value< 0.05with at least one of the gene sets for NP, NFT, or AD risk.

3 RESULTS

3.1 AD-associated modules in AD brains were
preserved in independent studies

Theoverall studydesign includingmodule selectionprocess is provided

in Figure S1 in supporting information. Eighty-three modules were

identified in the discovery dataset (FHS/BUADRC), and 29 of these

modules were preserved in the two validation datasets (Figure 1A).

Fourteenof the29preservedmodules (M1–M14) containedgenes that

were significantly enriched in at least one of the AD gene sets (NP,

NFT, or AD risk) with FDR < 0.05 (Figure 1B and Table 1). Interest-

ingly, only four modules (M1–M3 and M11) were nominally enriched

in the AD risk gene set, and all 14 modules were at least three orders

ofmagnitudemore significantly enriched in eitherNP orNFT gene sets

(Table 1). These findings may imply that our modules derived from the

transcriptome datasets of AD brains (without AD-free controls) would

capture the gene sets for underlying changes in AD pathology, rather

than the overall disease risk. Therefore, we selected one outcome,

either NP or NFT, but not AD risk, to compute fourteen mbPRSs (NP-

linkedmodules: M2,M5,M6,M10, andM13; NFT-linkedmodules: M1,

M3, M4, M7–M9, M11, M12, and M14), according to its most signifi-

cantly enriched gene set and the GWAS summary data of the selected

outcome (NP or NFT).

All 14 AD-associated modules were significantly enriched in spe-

cific cell types, and these results were consistent between tempo-

ral lobe and prefrontal cortex regions (Figure 1B and Table S3 in

supporting information). M1 to M4 modules were predominantly

enriched in excitatory neurons (best P with M2 from prefrontal cor-

tex = 4.4 × 10−188), M6 and M7 in astrocytes (best P with M7 from

prefrontal cortex = 1.3 × 10−97), M10 in endothelia (P from tem-

poral lobe = 9.9 × 1087), and M11 in microglia (P from temporal

cortex = 1.7 × 10−129). The other five modules (M5, M8, M9, M12,

andM13) were significantly enriched in more than one cell type, while

M5 and M8 (astrocytes), M9 (endothelia), M12 (neurons), and M13

(microglia) were significantly enriched in at least one cell type in both

brain regions.

3.2 Module-based PRSs explained heterogeneity
in cognitive functions among AD patients

Of14preserved andADassociatedmodules,we computedmbPRSs for

nine NFT-linked modules (M1, M3, M4, M7–M9, M11, M12, andM14)

using NFT, while computing mbPRSs of the remaining five NP-linked

modules (M2,M5,M6,M10, andM13) usingNP. Threemodules, includ-

ing M2, M13, and M14, were excluded due to their low standard error

(<0.05) and/or their extremely skewed distributions for the following

analyses (Table S4 in supporting information), leading to11modules for

further evaluation.

In comparison, three gwPRSs were significantly correlated with

mbPRSs of the M3, M11, and M12 modules (correlation r2 ≥ 0.1),

while the rest of the eight mbPRSs were not correlated with those for

gwPRSs (r2 < 0.01; Figure S2 in supporting information). The mean

values of all three gwPRSs were sequentially increased from CN to

MCI and AD (Figure 1C). In contrast, the mean values of mbPRSs were

varied across the disease stages, and the mean values of modules M3–

M6 and M10 were smaller in MCI or AD stages than in the CN stage

(Figure 1C). For the disease progression, two gwPRSs (NFT and AD

risk) and three mbPRSs (M3, M11, and M12) were significantly asso-

ciatedwith the progressions fromCN to bothMCI and AD (Figure 1D).

None of the PRSs were associated with the progression from MCI to

AD. Interestingly, NFT-gwPRS and M9-mbPRS were associated with

theprogression fromCNtoMCI,whileM6-mbPRSwas associatedwith

the progression from CN to AD. All three gwPRSs were significantly

associated with most cognitive test scores, except for the visuospatial

domain (COPYSCORE), with consistent effect directions across cogni-

tive tests. This indicates that the gwPRSs are not likely to differentiate

cognitive impairment heterogeneity among AD cases (Figure 1E).

Five mbPRSs, for M3, M6, M9, M11, and M12, were robustly asso-

ciated (all tests in domains with P-value < 0.05), while two mbPRSs

for M7 and M10 were nominally associated with only one cognitive

test in the domain (Figure 1E and Table S5 in supporting informa-

tion). Four mbPRSs, for M1, M4, M5, and M8, showed no association
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F IGURE 1 A, Schematic of our study design.We constructed co-expressionmodules (sets of genes), selected AD-associatedmodules, and
generatedmodule-based polygenic risk scores for explaining the AD heterogeneity, which were tested and evaluated with gene sets for
AD-related neuropathological traits (NP andNFT), human brain cell-types, cognitive test scores, cognitively defined AD subgroups, and brainMRI
imaging data.B, Enrichment analysis. The strength of enrichment results with the 11 AD-associatedmodules for AD phenotypes (NP, NFT, and AD
risk; left) and cell type–specific gene sets in temporal lobe (middle) and DLPFC (right). The darker color indicates themore significant enrichment
P-value. M2,M13, andM14modules were excluded since thesemodules were not followed up by further analyses. C, Heatmap of mean values for
mbPRSs and gwPRSs across the disease stages including CN,MCI, and AD (the darker color indicates the larger mean value of the PRS).D,
Associations between PRSs (mbPRSs and gwPRSs) and disease progression (CN toMCI, CN to AD,MCI to AD). The darker color indicates themore
significant P-value. E, Associations between PRSs (mbPRSs and gwPRSs) and seven test scores for four cognitive domains (executive functioning,
visuospatial functioning, language, andmemory). Red and blue color represents positive and negative effect direction, respectively. The number of
asterisks (*) in the cells indicate the strength of associations. AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CIH,
cognitive impairment heterogeneity; CN, cognitively normal; DLPFC, dorsolateral prefrontal cortex; FHS, FraminghamHeart Study; gwPRS,
genome-wide polygenic risk score; mbPRS, module-based polygenic risk score;MCI, mild cognitive impairment; MRI, magnetic resonance imaging;
NFT, neurofibrillary tangle; NP, neuritic plaque; PRS, polygenic risk score; SNP, single nucleotide polymorphism

(P-value > 0.05) with any cognitive test scores (Figure 1E and Table

S5). Of the fivembPRSswith robust associations for cognitive domains,

mbPRSs for M3 andM11were strongly associated with the three cog-

nitive domains except for the visuospatial functioning, indicating that

mbPRSs fromM3 and M11 did not differentiate cognitive impairment

heterogeneity. The M6-mbPRS was nominally associated with all two

language-domain test scores (BNTTOTAL P-value = 0.03 and CATAN-

IMSC P-value = 0.01). The M9-mbPRS was associated with all tests in

memory andexecutive function domains (P<0.05), aswell aswith visu-

ospatial functioning domain (COPYSCORE P-value = 0.05). The M12-

mbPRS was strongly associated with language (best P with BNTTO-

TAL= 2.2× 10−6) andmemory (best Pwith LIMMTOTAL= 4.4× 10−6)

domains (Table 2). Therefore, we prioritized M6, M9, and M12 as CIH

modules and attempted to validate the associations between mbPRSs
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CHUNG ET AL. 5179

TABLE 2 Associations between cognitive test scores and threemodule-based PRSs

Cognitive domain Cognitive test

M6 M9 M12

BETA SE P-value BETA SE P-value BETA SE P-value

Executive

functioning

TRAASCOR –0.16 0.12 0.17 0.18 0.06 1.08× 10–3 0.02 0.02 0.15

TRABSCOR –0.26 0.12 0.03 0.18 0.06 1.58× 10–3 0.03 0.02 0.05

Visuospatial

functioning

COPYSCORE 0.03 0.12 0.79 –0.12 0.06 0.049 –0.01 0.02 0.77

Language BNTTOTAL 0.26 0.12 0.03 –0.17 0.06 2.57× 10–3 –0.08 0.02 2.23× 10–6

CATAANIMSC 0.29 0.12 0.01 –0.11 0.06 0.05 –0.04 0.02 0.01

Memory LDELTOTAL 0.22 0.12 0.06 –0.18 0.06 1.14× 10–3 –0.07 0.02 4.55× 10–5

LIMMTOTAL 0.18 0.12 0.12 –0.15 0.06 7.18× 10–3 –0.08 0.02 4.42× 10–6

Note: LIMMTOTAL and LDELTOTAL: logical memory immediate and delayed recall tests; TRAASCOR and TRABSCOR: Trail Making Test Parts A/B. CATAN-

IMSC: category fluency animal score; BNTTOTAL: BostonNaming Test total; COPYSCORE: clock test total score. Beta estimates (BETA), standard error (SE),

and P-values were calculatedwithmodule-based polygenic risk scores of theM2,M6, andM9modules for domain-specific cognitive functions.

TABLE 3 Membership assignment of threemodule-based PRSs in previously defined cognitive subtypes of AD in ADNI

Source of

PRS

Executive functioning ST Language ST Memory ST Visuospatial functioning ST

OR (95%CI) P OR (95%CI) P OR (95%CI) P OR (95%CI) P

Genome-wide PRS (gwPRS)

NP 0.99 (0.93–1.0) 0.69 0.99 (0.95–1.0) 0.43 1.00 (0.99–1.00) 0.57 1.00 (0.97–1.00) 0.75

NFT 1.00 (0.91–1.10) 0.98 0.99 (0.93–1.01) 0.74 1.01 (1.00–1.11) 0.04 0.96 (0.91–1.01) 0.09

AD risk 1.01 (0.93–1.10) 0.65 0.97 (0.91–1.00) 0.24 1.00 (1.00–1.10) 0.08 0.96 (0.91–1.00) 0.07

Module-based PRS (mbPRSs)

M6 0.37 (0.04–3.60) 0.39 5.50 (1.50–20.0) 0.009 0.97 (0.44–2.20) 0.95 0.88 (0.28–2.80) 0.83

M9 0.95 (0.34–2.60) 0.92 0.81 (0.42–1.50) 0.51 1.20 (0.84–1.80) 0.29 1.91 (1.11–3.31) 0.04

M12 1.10 (0.78–1.50) 0.66 0.92 (0.75–1.10) 0.40 1.00 (0.92–1.20) 0.56 1.00 (0.87–1.20) 0.76

Note: Cognitively defined AD subtypes (ST) in ADNI have been previously defined.9 Bold values with significance at P < 0.01 and OR > 1.0 indicate these

modules are likely members of the corresponding cognitively defined subtypes.

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’sDiseaseNeuroimaging Initiative; CI, confidence interval; NP, neuritic plaques;NFT, neurofibrillary

tangles; OR, odds ratio; PRS, polygenic risk score.

of the CIH modules (M6, M9, and M12) and the cognitive test scores

among the AD cases in FHS (Table S6 in supporting information). We

replicated nominally significant associations (P < 0.05) between the

M6-mbPRS and two language-domain cognitive test scores inADcases

from the FHS (BNT30 P-value = 0.03 and BNT30cue P-value = 0.03;

Table S7 in supporting information). Although we did not find associa-

tions of two modules (M9 and M12) with the cognitive test scores in

FHS, three CIH modules (M6, M9, and M12) were further tested with

cognitively defined subgroups9 and brain atrophy among AD patients.

3.3 Module-based PRS associations with
cognitively defined AD subtypes and brain atrophy

Of the three CIH mbPRSs, the mbPRSs of M6 and M9 showed nomi-

nal associations at P < 0.05 with odds ratio (OR) > 1.0 with previously

defined cognitive subtypes for AD-Language (OR = 5.5; P = 0.01) and

AD-Visuospatial functioning (OR=1.9;P=0.04), respectively (Table3).

The M12-mbPRS was associated with none of the cognitive subtypes

(Table 3). In contrast, the gwPRSs for NP and AD risk failed to differ-

entiate any of the subgroups, while only NFT-gwPRS was nominally

associated with the AD-Memory subtype (OR= 1.01; P= 0.04).

ThembPRSs ofM6 andM9were significantly associated with corti-

cal thickness at specific brain locations (M6: bilateral frontal, parietal,

and temporal lobes;M9: bilateral frontal lobes; Figure 2A). Particularly,

the brain atrophy for the M6-mbPRS was localized at the Wernicke

area where lesions have been associated with severe impairments of

word comprehension.24

3.4 Functional profiling of M6 and M9

Among the genes in M6 and M9, we focused on the GWAS genes (i.e.,

seed genes) containing a SNPwith P<0.001 forNPorNFT (# ofGWAS
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5180 CHUNG ET AL.

F IGURE 2 M6 andM9were selected as cognitive impairment heterogeneity (CIH) modules.A, Association between cerebral cortical
thickness andmodule-based polygenic risk scores forM6 andM9. P-valuemapwith threshold at P< 0.05 indicated that the darker blue color
showedmore significant P-value.B, Co-expression network of genes inM6 andM9.C, Pathways enriched forM6 andM9.D, Associations of the
expression levels of genes inM6 andM9with AD and AD-related neuropathological traits (previously published13). AD. Alzheimer’s disease

genes, M6 = 16 and M9 = 11; Figure 2B and Table S8 in support-

ing information). The seed genes in M6 were significantly enriched in

pathways (Figure 2C and Table S9 in supporting information) including

morphology of nervous system (P= 4.0× 10−8), abnormal morphology

of nervous system (P = 7.8 × 10−7) and differentiation of astrocytes

(P = 8.4 × 10−5), while the M9 seed genes were enriched in path-

ways including vascular system including development of vasculature

(P = 3.8 × 10−9), angiogenesis (P = 3.0 × 10−8), and vasculogenesis

(P= 2.5× 10−7; Figure 2C and Table S9).

According to our previous report,13 the majority of the seed genes

in M6 (best: DOCK1, P = 3.0 × 10−7) and M9 (best: SLC25A30,

P = 6.3 × 10−6) were upregulated in AD compared to control brains

(Table S10 in supporting information). In addition, we observed sig-

nificant associations between expression levels of the seed genes in
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CHUNG ET AL. 5181

M6 and M9 and AD-related protein levels (Figure 2D and Table S11 in

supporting information). The seed genes inM6were significantly asso-

ciated (P<0.05)withCERADscores, Braak stages, Aβ42, p-tau181/total
tau (t-tau) ratio, p-tau231/t-tau ratio, C4a, C4b, and PSD95 (Table

S11), with the most significant association observed with expression

of ADCY2with p-tau181/t-tau ratio (P-value= 1.1 × 10−3). The expres-

sions of the seed genes in M9 were nominally associated with Braak

stages, Aβ42, p-tau231/t-tau ratio, and C4a levels with the best P-value
between expression ofDISC1 and C4a (P-value= 1.0× 10−3).

4 DISCUSSION

4.1 Key findings

The goal of this study was to identify gene sets responsible for the

biological mechanisms underlying AD heterogeneity. We generated

modules (gene sets) that were commonly observed in multiple tran-

scriptome datasets of AD brains. We closely evaluated biological

coherence and disease relevance of networks of genes (modules) using

profiling of human brain cell types and genetics of AD neuropathology.

Then, we selected the CIH modules (M6, M9, and M12) that are likely

to explain the disease heterogeneity in cognitive impairment of the AD

patients, by testing with domain-specific cognitive test scores in ADNI

(clinic-based study) and in FHS (population-based study).We identified

and validated two CIH modules (M6 and M9) that showed significant

associations for language and visuospatial domains withmatching cog-

nitive AD subtypes (AD-Language and AD-Visuospatial), respectively.

These resultswere further linked to atrophy in specific brain areas (M6:

Wernicke’s area in temporoparietal cortex; M9: frontal cortex), which

were previously reported to underpin language comprehension24,25

and visuospatial deficit.26 This study demonstrated the novel con-

cept that can be generalizable and applicable to diverse populations,

although not all the modules are available in all populations. The

process and approach used in this study indicate that polygenic risk

profiling in co-regulated and biologically connected genes provide

unique and distinct frameworks to explain AD heterogeneity.

4.2 Advantage of mbPRSs for AD subgrouping

The three gwPRSs for NP, NFT, and AD risk showed high correla-

tions with each other and largely similar patterns from associations

with disease conversion and cognitive test scores. In contrast, the

mbPRSs showed almost no correlations with each other and were

associated with the performance of specific cognitive domains. These

findings, after comparing our novel mbPRSs to conventional gwPRSs,

demonstrate that mbPRSs can be more useful for explaining the clin-

ical heterogeneity in AD patients, while gwPRSs (i.e., traditional PRS)

can be more relevant to predict overall disease risk. Our mbPRSs

successfully distinguished differences in clinical (cognitive domains)

and structural brain imaging patterns, indicating representation of dif-

ferent disease mechanisms and thereby would be effective tools for

dissecting disease heterogeneity. The gwPRSs forNPandADrisk failed

to recognize the AD subgroups. Only the gwPRS for NFT discerned

the most typical cognitive subgroup, AD-Memory domain. In contrast,

newly identified mbPRSs for M6 and M9 modules recognized differ-

ent types of AD subgroups. This indicates that the conventional gwPRS

approach is less likely to recognize differences among AD subtypes.

Further, these results support our hypothesis that subgrouping genetic

markers from gene sets responsible for a distinct disease mechanism

leading to an AD subtype is important for precision medicine and

genome-guided clinical trials.

There have been huge efforts to improve prediction and dis-

tinguish disease subtypes using polygenic profiling for early detec-

tion of subjects at risk.27–29 Polygenic risk scores can be useful to

predict disease development or treatment responses in particular

patient subgroups.30 Our module-based polygenic profiling has inno-

vative features compared to those previously conducted co-expression

studies11,12 and conventional PRS approaches for AD.29–32 First, our

co-expression modules were developed from only AD brains exclud-

ing CN and MCI brains, while previous co-expression studies used

transcriptome data of AD cases together with controls.11,12 Biologi-

cal processes underlying disease heterogeneity in AD brains may be

different from CN or MCI brains.33,34 Inclusion of non-AD transcrip-

tome data would well differentiate gene sets relevant to the disease

risk but not explain disease heterogeneity. Second, previous polygenic

profiling studies havegeneratedPRSsbyaggregating genetic estimates

of genome-wide or most significant SNPs, which may have improved

prediction rates30 but cannot explain specific biological functions. In

contrast, our mbPRSs derived from biologically coherent gene sets

enable us to interpret biological functions of the modules and thereby

provide insights on functional/mechanistic pathways for the AD sub-

types. A previous study demonstrated that genomic annotations at the

single tissue level can improve our understanding on the etiology of

complex human diseases.35 A recent simulation study with failed AD

trials confirms that themain reason for failure reason is that variability

between individuals in trials masks efficacy.3 Therefore, our mbPRSs

relevant to cell/tissue-level transcriptome profiles, brain imaging data,

and cognitively defined subgroups can be used for studying disease

subtypes, prognosis, and response of treatment.

4.3 Role of omics and genetic profiling in AD
subgrouping

Profiling using omics data including transcriptome data at tissue- or

cell-level helped identify clinically and neuropathologically heteroge-

neousmodules but also aided understanding of the biological functions

of the modules. For example, the identified M6 module genes were

enriched for astrocytes, neuritic plaque scores, and language domain

of cognitive function. This confirms the previous report that astrocytes

are involved in amyloid clearance36 and damaged astrocytes impact

language domain among AD patients.37 Our discovery showed that

M9 module genes are linked to endothelial cells, Braak stages, and

visuospatial functioning in this study. Increased vascular inflammation
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5182 CHUNG ET AL.

in endothelial cells has been observed among AD patients with poor

short-term visuospatial functioning.38

Genes in theM6andM9modules have been previously reported for

association with neurodegenerative diseases. Most of the genes in the

two modules have biological functions relevant to the nervous system

or have been previously reported in genetic or experimental studies for

neurodegenerativediseases. For example, SLC6A11 inM6hasbeen tar-

geted for drug development of different neurodegenerative diseases

including epilepsy.39 GLIS3 in M9 has been associated with T2D40,41

anda longer life expectancy.42 SNPs fromGLIS3 inM9showedgenome-

wide significant associations from GWASs for Aβ and p-tau proteins in
cerebrospinal fluid (CSF).43

4.4 Limitations

Our study has several limitations. First, the sample size of discovery

AD brains was modest. Therefore, we did not have statistical power

for explaining the subtle phenotypic variations among AD patients,

which might lead to detection of modules associated with a few spe-

cific cognitive domains. In addition, our current study exclusively relied

on cognitive test scores for prioritizing CIH modules, which may not

be useful for detecting unknown or brain imaging–based subtypes

of the disease. Second, our findings in ADNI may not represent AD

heterogeneity in other populations. However, because one of mod-

ules was replicated in an independent study (FHS), there are shared

mechanisms across diverse populations. Third, because we focused on

AD patients, our sample size of AD subgroups remained underpow-

ered, so we could not apply multiple testing correction in the current

study. This limitation was mitigated by replicating one of the mbPRSs

in FHS. Fourth, we limited our mbPRSs calculations using GWAS sum-

mary statistics for AD risk and neuropathological outcomes regardless

of available GWAS studies for CSF biomarker44 or brain imaging

data.1 We decided to focus on neuropathological outcomes instead of

biomarkers, because our goal is to explain AD heterogeneity by link-

ing clinical subtypes to neuropathological outcomes. Fifth, we did not

observe significant associations between PRSs and uncommon sub-

groups (e.g., AD-Executive). Thismaybebecausemost of thepreviously

defined cognitive subtypes in ADNI were predominantly classified as

subgroups ofmemory (31.8%), and the executive functioning subgroup

(2%) was relatively limited, especially in small datasets. In addition,

datasets with GWAS for enough AD patients with carefully classi-

fied clinical phenotypes and clinically and/or pathologically defined

subtypes are extremely limited. Finally, we recognize that the GWAS

summary statistics for AD neuropathological traits (NP and NFT) in

this study were generated based on genotype imputation using a pre-

vious reference panel (1000Genomes),18 whichmay affect quality and

accuracy of our gene sets and PRSs. However, we used common SNPs

(minor allele frquency > 5%) for constructing gene sets and PRSs, and

the imputation qualities of common SNPs are still relatively acceptable

even in the previous reference panel.45 Therefore, potential problems

caused by low imputation quality would be relatively limited in our

study.

Future work in other independent GWAS samples with cognitively

defined subgroups (or relevant subgroups based on cognitive tests)

will be required to validate our module-based subgrouping of AD

patients. Furthermore, linking genetics of various AD-related pheno-

types including endophenotypes would enhance our ability to dissect

further disease heterogeneity.10 Other AD-related GWAS summary

data including cerebral amyloid angiopathy, hypertension, cholesterol,

and insulin resistance can be added for extending AD phenotype gene

sets, whichwill lead us to detect novel gene sets and to recognize other

subgroups beyond AD-Language/Visuospatial domains.

4.5 Conclusion

In conclusion, PRSs developed using biologically coherent gene sets

and disease-related phenotypes can successfully differentiate cog-

nitively defined subgroups and brain region–specific atrophy, which

likely represent specific mechanistic pathways responsible for the cor-

responding disease subtypes. Classification of patients using genetic

informationwill allow patient subgrouping and target prioritization for

the subgroups, which may eventually lead to precision medicine in AD.

However, AD heterogeneity explained by the specific polygenic risk

profiles in this study does not mean that mbPRSs can predict subjects

in different disease stages of AD or at risk to AD progression in the

future, as ourmbPRSs can only differentiate AD patients into different

cognitive subgroups. By comparing high- and low-risk groups of each

mbPRSs using cognitively normal and MCI subjects, this aspect may

be tested in the future. Our study warrants further validations in large

datasets.
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